Conic Approximation with Provable Guarantee for Traffic Signal Offset Optimization

نویسندگان

  • Yi Ouyang
  • Richard Y. Zhang
  • Javad Lavaei
  • Pravin Varaiya
چکیده

We consider the offset optimization problem that coordinates the offsets of signalized intersections to reduce vehicle queues in large-scale signalized traffic networks. We adopt a recent approach that transforms the offset optimization problem into a complex-valued quadratically-constrained quadratic program (QCQP). Using the special structure of the QCQP, we provide a π/4-approximation algorithm to find a near-global solution based on the optimal solution of a semidefinite program (SDP) relaxation. Although large-scale SDPs are generally hard to solve, we exploit sparsity structures of traffic networks to propose a numerical algorithm that is able to efficiently solve the SDP relaxation of the offset optimization problem. The developed algorithm relies on a tree decomposition to reformulate the large-scale problem into a reduced-complexity SDP. Under the practical assumption that a real-world traffic network has a bounded treewidth, we show that the complexity of the overall algorithm scales near-linearly with the number of intersections. The results of this work, including the bounded treewidth property, are demonstrated on the Berkeley, Manhattan, and Los Angeles networks. From numerical experiments it is observed that the algorithm has a linear empirical time complexity, and the solutions of all cases achieve a near-globally optimal guarantee of more than 0.99.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tractable Approximations to Robust Conic Optimization Problems

In earlier proposals, the robust counterpart of conic optimization problems exhibits a lateral increase in complexity, i.e., robust linear programming problems (LPs) become second order cone problems (SOCPs), robust SOCPs become semidefinite programming problems (SDPs), and robust SDPs become NP-hard. We propose a relaxed robust counterpart for general conic optimization problems that (a) prese...

متن کامل

Geometric Conic Spline Approximation in Cagd

We characterize the best geometric conic approximation to regular plane curve and verify its uniqueness. Our characterization for the best geometric conic approximation can be applied to degree reduction, offset curve approximation or convolution curve approximation which are very frequently occurred in CAGD(Computer Aided Geometric Design). We also present the numerical results for these appli...

متن کامل

Maximum Likelihood Bounded Tree-Width Markov Networks

We study the problem of projecting a distribution onto (or finding a maximum likelihood distribution among) Markov networks of bounded tree-width. By casting it as the combinatorial optimization problem of finding a maximum weight hypertree, we prove that it is NP-hard to solve exactly and provide an approximation algorithm with a provable performance guarantee.

متن کامل

Smart routing: Fine-grained stall management of video streams in mobile core networks

Video traffic has dominated the global mobile data traffic and creates the fundamental need for continuous enhancement and fast evolution in mobile networks so as to accommodate its unprecedented growth. Despite the surging interests in Radio Access Networks (RANs), the latest technologies on dense and heterogeneous wireless networks are shifting the bottleneck of mobile networks to the core ne...

متن کامل

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018